Распределение Стьюдента

Распределение Стьюдента
Плотность вероятности
Изображение:Student densite best.JPG
Функция распределения
Параметры n > 0\! - число степеней свободы
Носитель x \in (-\infty; +\infty)\!
Плотность вероятности \frac{\Gamma((n+1)/2)} {\sqrt{n\pi}\,\Gamma(n/2)\,(1+x^2/n)^{(n+1)/2}}\!
Функция распределения \frac{1}{2} + \frac{x \Gamma \left( (n+1)/2 \right) \,_2F_1 \left ( \frac{1}{2},(n+1)/2;\frac{3}{2};-\frac{x^2}{n} \right)} {\sqrt{\pi n}\,\Gamma (n/2)} где \,_2F_1 - гипергеометрическая функция
Математическое ожидание 0
Медиана 0
Мода 0
Дисперсия \frac{n}{n-2}\! если n > 2
Коэффициент асимметрии 0 если n > 3
Коэффициент эксцесса \frac{3n - 6}{n-4}\! где n > 4
Информационная энтропия \begin{matrix} \frac{n+1}{2}\left[ \psi(\frac{1+n}{2}) - \psi(\frac{n}{2}) \right] \\[0.5em] + \log{\left[\sqrt{n}B(\frac{n}{2},\frac{1}{2})\right]} \end{matrix}
Производящая функция моментов не определена
Характеристическая функция

Распределе́ние Стью́дента в теории вероятностей - это однопараметрическое семейство абсолютно непрерывных распределений.

Содержание

Определение

Пусть Y_0,Y_1,\ldots, Y_n - независимые стандартные нормальные случайные величины, такие что Y_i \sim \mathrm{N}(0,1),\; i=1,\ldots, n. Тогда распределение случайной величины t, где

t = \frac{Y_0}{\sqrt{\frac{1}{n}\sum\limits_{i=1}^n Y_i^2}}

называется распределением Стьюдента с n степенями свободы. Пишут t˜t(n). Её распределение абсолютно непрерывно и имеет плотность

f_t(y) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \, \Gamma\left(\frac{n}{2}\right)}\, \left(1+\frac{y^2}{n}\right)^{-\frac{n+1}{2}},

где Γ - гамма-функция.

Свойства распределения Стьюдента

  • Распределение Стьюдента симметрично. В частности если t˜t(n), то
t˜t(n).

Моменты

Случайная величина t˜t(n) имеет только моменты порядков k < n, причём

\mathbb{E}\left[t^k\right] = 0, если k нечётно;
\mathbb{E}\left[t^k\right] = \frac{\Gamma(\frac{k+1}{2})\Gamma(\frac{n-k}{2})^{k/2}}{\sqrt{\pi}\Gamma(\frac{n}{2})}, если k чётно.

Моменты порядков k \ge n не определены. В частности,

\mathbb{E}[t] = 0,
\mathrm{D}[t] = {n \over n - 2}, если n > 2.

Применение распределения Стьюдента

Распределение Стьюдента используется в статистике для точечного оценивания, построения доверительных интервалов и тестирования гипотез, касающихся неизвестного среднего статистической выборки из нормального распределения. В частности, пусть X_1,\ldots, X_n независимые случайные величины, такие что X_i \sim \mathrm{N}(\mu, \sigma^2),\; i=1,\ldots, n. Обозначим \bar{X} выборочное среднее этой выборки, а S2 её выборочную дисперсию. Тогда

\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim \mathrm{t}(n-1).

Связь с другими распределениями

\mathrm{t}(1) \equiv \mathrm{C}(0,1).
  • Распределение Стьюдента сходится к стандартному нормальному при n \to \infty. Пусть дана последовательность случайных величин \{t_n\}_{n=1}^{\infty}, где t_n \sim \mathrm{t}(n),\; n \in \mathbb{N}. Тогда
t_n \to \mathrm{N}(0,1) по распределению при n \to \infty.
  • Квадрат случайной величины, имеющей распределение Стьюдента, имеет распределение Фишера. Пусть t˜t(n). Тогда
t2˜F(0,n).
Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Колмогорова | Коши | логнормальное | Лоренца | нормальное | равномерное | Парето | Стьюдента | Фишера | хи-квадрат | экспоненциальное | Эрланга многомерное нормальное
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home