Волновая функция

Волнова́я фу́нкция (функция состояния, пси-функция, амплитуда вероятности) — комплексная функция, используемая в квантовой механике для вероятностного описания состояния квантовомеханической системы. В широком смысле — то же самое, что и вектор состояния.

Вариант названия «амплитуда вероятности» связан со статистической интерпретацией волновой функции: вероятность нахождения частицы (или физической системы) в данном состоянии равна квадрату абсолютного значения амплитуды вероятности этого состояния.

Содержание

Физический смысл квадрата модуля волновой функции

Волновая функция

\! \Psi(x_1, x_2, \ldots , x_n)

зависит от координат (или обобщённых координат) системы и формируется таким образом, чтобы квадрат её модуля

\! \left|\Psi(x_1, x_2, \ldots , x_n)\right|^2

представлял собой плотность вероятности (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами

\! x_1=x_{01}, x_2=x_{02}, \ldots , x_n=x_{0n}.

Набор координат, которые выступают в роли аргументов функции, представляет собой полный набор физических величин, которые можно измерить в системе. В квантовой механике возможно выбрать несколько полных наборов величин, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор определяет представление волновой функции. Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении, то квадрат модуля волновой функции представляет собой плостность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении, то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс.

Для волновых функций справедлив принцип суперпозиции, заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями

\! \Psi_1 и \! \Psi_2,

то она может пребывать и в состоянии, описываемом волновой функцией

\! \Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2

при любых комплексных

\! c_1 и \! c_2.

Свойства волновой функции

Отметим свойства волновой функции \! \Psi в частном случае трёхмерного пространства в декартовых координатах. В этом случае \! \Psi зависит от трёх переменных \! x, y, z и имеет следующие свойства :

1. Импульс частицы в каждом из направлений \! x, y, z пропорционален первой производной волновой функции, делённой на саму волновую функцию, а именно
{p}_x = -i \hbar {\partial \Psi \over\partial x} / \Psi ;       \! {p}_y = -i \hbar {\partial \Psi \over\partial y} / \Psi ;       {p}_z = -i \hbar {\partial \Psi \over\partial z} / \Psi ,
где \! {p}_x , \, {p}_y , \, {p}_z — импульсы, i = \sqrt -1 , \hbar = {h \over 2 \pi}.
2. Кинетическая энергия частицы ( {p}_x^2 + {p}_y^2 + {p}_z^2 ) / 2 m пропорциональна второй производной, или кривизне волновой функции, деленной на саму волновую функцию
{E}_K = - {{\hbar}^2 \over 2 m } \left( {{\partial}^2 \Psi \over\partial x^2} + {{\partial}^2 \Psi \over\partial y^2} + {{\partial}^2 \Psi \over\partial z^2} \right) / \Psi .
3. Абсолютная величина квадрата функции \left| {\Psi}^2 \right| (то есть сумма возведённых отдельно в квадрат мнимой и действительной частей функции \! \Psi) равна вероятности нахождения частицы в точке с координатами \! ( x, y, z ). Это свойство противоречит законам классической механики, в которой положение частиц в данный момент времени фиксировано. Одно из мнимых ограничений квантовой механики состоит в том, что она с достоверностью определяет лишь время (или, точнее говоря, вероятность) нахождения частицы в данном положении \! ( x, y, z ). В квазиклассическом пределе \hbar \to 0 волновые функции локализуются в дельта-функции, а центры их сосредоточения движутся по классическим траекториям согласно уравнениям Ньютона.

Матричная и векторная формулировки

Любая функция может быть представлена, как бесконечная таблица из её значений, соответствующих каждому аргументу. Если представить в таком виде волновую функцию, то она станет столбцом координат бесконечномерного вектора в Гильбертовом пространстве, то есть, матрицей.

Одна и та же волновая функция в различных представлениях — будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов.

Функциональная (волновая), матричная и векторная формулировки математически эквивалентны.

Философский смысл волновой функции

Волновая функция представляет собой наиболее полное возможное описание квантовомеханической системы. Если в классической механике полное описание системы заключалось в задании местоположений и скоростей всех её частиц и это описание позволяло описать всё будущее и прошлое системы, то в квантовой механике некоторые параметры описать принципиально невозможно. Согласно квантовой механике, описание системы заканчивается на уровне волновой функции и только на уровне волновой функции возможно описать будущее и прошлое системы. Более подробное описание системы, например, с точностью до указания местоположений и скоростей всех её частиц — невозможно и значения этих параметров оказываются более или менее случайными.

Таким образом, создав квантовую механику, наука дошла до состояния, когда она смогла положить конец многовековому противопоставлению детерминизма и индетерминизма. Современная наука утверждает, в мире сочетаются детерминизм и индетерминизм, и границей между ними служит волновая функция.

См. также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home